Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system.

نویسندگان

  • Annayya R Aroor
  • James R Sowers
  • Guanghong Jia
  • Vincent G DeMarco
چکیده

Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Benzimidazole derivatives on digestive system and cardiovascular system

One of the goals of medicinal chemistry research and drug discovery is to provide a rationalbasis for the design of new medicinal agents. Organic compounds and their reactions have beenutilized by people since antiquity. Due to the increasing demand for bioactive molecules, organicchemists are increasingly required to synthesize new compounds of biological interest. AsBenzimidazoles are very us...

متن کامل

Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the ...

متن کامل

Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the ...

متن کامل

Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition.

AIMS Dipeptidyl peptidase-4 (DPP-4) inhibitors are a novel class of drugs for the treatment of hyperglycaemia. Preliminary evidence suggests that their antioxidant and anti-inflammatory effects may have beneficial effects on the cardiovascular complications of diabetes. In the present study, we investigate in an experimental sepsis model whether linagliptin exerts pleiotropic vascular effects i...

متن کامل

Pleiotropic Effects of Calcium Channel Blockers

Clinical trials have reported reduced cardiovascular events with certain antihypertensive agents at a rate that could not be predicted by changes in brachial arterial pressure alone. These findings may be explained, in part, by pleiotropic effects of these agents and modulation of central blood pressures. This review focuses on the mechanisms by which calcium channel blockers exert pleiotropic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 307 4  شماره 

صفحات  -

تاریخ انتشار 2014